"Water for Future Projects"

Are New Approaches Needed?

Clark Fork Basin An Orientation

NOXON

BUTTE

Basin Water Yield below Noxon MT

- Annual Discharge: 15,014,732 Acre Feet
- Spring Runoff: April 1,349,828

May - 2,488,427

June - 3,008,409

July - 1,419,719

subtotal **8,266,484**

USGS Water Resources Data

Montana 2003

Period of record 1960-2003

- 90% exceedance: 7,260 cubic feet/second (cfs)
- 50% exceedance: 15,000 cfs
- Seven Day minimum(s): 2,250 cfs (wy 1963)

6,280 cfs (wy 2002)

5,330 cfs (wy2003)

Reservoir Storage

Total 5,933,000 ac-ft (14% average annual runoff)

- Hungry Horse (3.5m ac-ft)
- Flathead Lake (1.8m ac-ft)
- Thompson Falls (14,970 ac-ft)
- Noxon Rapids
 - (334,600 ac-ft)
- Milltown dam (minimal)

- DNRC-
 - E. Fk. Rock Ck,
 - Nevada Res.,
 - Painted Rocks
 - -(60,000 ac-ft)
 - Georgetown
 - (31,040 ac-ft)
- Flathead Reservation
 - (about 14 small sites),
 - 157,740 ac-ft
- Lake Como
 - 34,920 ac-ft

Western Montana Water Use

- Withdrawal (Est.)
 - -29,550,041 acre feet

- Consumed (Est.)
 - -551,836 acre feet

- o <mark>ի</mark>եր<u>om</u>
- "Montana Water Use in 1980"
- MT DNRC, published March 1986

retisVV	Rights	& Use	25
Clar	k Fork	Basin	(2004)

Analysis of DNRC's State Centralized Water Right Data Base – Identification of Unique uses by priority date. M Mclane

Purposes	Surface & Ground Water	Surface Water Uses	Ground Water Uses	Surface Water Post 1970	Ground Water Post 1970
All Uses	92,822	25,839	66,983	4,462	56,262
Summary of Similar Uses					
Domestic	39,997	3,914	36,083	1,246	31,779
Gen. Municipal	2,868	433	2,435	68	1,732
Irrigation, including L&G	28,182	12,532	15,650	1,866	13,630
Irrigation	17,115	12,005	5,110	1,387	3,831
Agricultural all	28,200	19,464	16,696	2,466	12,091
Wildlife	1,647	1009	636	466	436
Power Generation	151	127	24	39	11

Hydropower & Water Use

- Example: Hydropower Demand
 - Noxon Rapids water rights total 50,000 cfs,
 - Rights filled on average only 8% of the time,
 - Predominantly during 22 days in May and June of wet years.
- Affected parties:
 - Surface water uses (& connected ground water)
 - Junior water users appear to be a risk much of the time
 - Noxon (1951, 1959 & 1974),
 - •Kerr (1920) and
 - Thompson Falls (1909 & 1992)

The risk that these constraints will actually be imposed is unknown.

Basin Closures:

via

Legislation,

Rules,

Compacts &

Judicial Decision

Over Appropriation

• Minimum flow for aquatic life support = 40

Clark Fork River at 4 cfs

cfs

Connected Ground Water

- DNRC vs. TU
- Evaluation of Basin Closure for Exemption,
- What is connected ground water?

Induced water

Pre-stream capture

New Appropriations Program:

1. Permitting (new water rights)

2. Water Reservations
(future water & instream water)

3. Changes
(Modifying Existing Water rights)

Getting a New Water Right

- Single and Exclusive!
- Must apply for & receive a permit via DNRC.
 - Must apply before development.
 - Process is public and fact based.
- End product is a "Provisional Permit"
 - The MOST Junior Water Right in the system,
 - May have operational conditions, and
 - Subject to Water Commissioner's administration.

Exemptions:

- Non-perennial streams
- Pits & reservoirs
- Size must be less than 15 acre feet,
- Total appropriation less than 30 acre feet,
 - Located on a parcel of at least 40 acres.

Past Policy Actions

I. Water Reservation Statute

(85-2-316 MCA)

- II. Emphasis on market exchanges:
 - a. Temporary Change of Use provisions (85-2-407 MCA)
 - b. Salvage Statute (85-2-419 MCA)
 - c. Instream flow water leasing (85-2-408 and 436)

III. Water Marketing

Water Leasing Program (85-2-141 MCA)

- State run program
- DNRC is to hold and acquire water
- Water from new or existing storage reservoirs
- Specific reference to federal reservoirs
- Limited to 50,000 acre feet
- State remarkets water via leases
- State's response to export of water and to future water supplies – not yet implemented

IV. Water Storage: Dams

- Developed state policy. (85-1-701 MCA)
- Priority to enhancements @ existing sites,
- Water Storage Account developed (get \$
 figure),
- Increased access to grant funds, (85-1-602 (2) MCA)

- Constraints to new storage:,
 - High costs,
 - Are the best sites used (?),
 - Environmental Impacts,
 - Long term mitigation, &
 - Ability & Will to pay

Legislative Proposals

A. Groundwater Appropriations in Closed Basins (Augmentation)

B. Changes to "exempt from permit" groundwater

Augmentation (Substitute Water Supply Plans)

New applications Ground water in closed basins:

- Must submit a hydrologic report that quantifies any depletions to stream flow.
- Depletions, if any, trigger an augmentation requirement.
- Augmentation water must
 - Replace the amount of water consumed by the new use, and
 - · Replacement is to occur in the affected reach.

B. "Exempt Ground Water"

Exempt a Domestic and Commercial well if

- 35 gpm or less not to exceed 1 acre ft./yr., and
- May include ¼ acre lawn and garden

Leave exemptions for stock water springs, wells, and pit alone

If new water supplies won't support new basin water uses,

Are there New Alternatives

And Opportunities?

1. How About Existing Storage?

House Joint Resolution 3 (2005 session)

- Hungry Horse Reservoir
- DNRC enter negotiations to determine:
 - Cost and Availability
- Realities
 - Existing uses
 - (Power, flood control, fish mitigation)
 - Challenges
 - Prevent conflicts with existing use & mitigation activities,
 - \$ for investigation & analysis, and
 - Marketing / contracting options.

2. Active Water Leasing Program

- Should the "state" lease water as an alternative?
- Acquire both Stored & Natural Flows
- Lease would be based upon
 - "real", "wet", & "secure" water rights.
- Leases set for adequate time to capture values
- Charges should cover costs of acquisition & mgmt.
- Water could be easily renewed or reallocated.

3. "Changes of Use" (Policy questions)

Redefine a "Change" to include or allow:

- 1. Altering the Period of Diversion / Use
- 2. Method of Application Review (conversions from flood to sprinkler review to assess third party affects)
- 3. Allow Inefficiencies of flood irrigation to become a recognized use i.e. "ground water storage" or "augmentation"

4. New Storage: Ground Water Recharge

Ground Water

- "non-structural storage"
- Technical Management Issues
- Statutory Authorizations and Protection.
- Water Quality Concerns
- Geotechnical concerns

5. Water Banking

- 1. Facilitate the transactions of water exchanges.
- 2. Manage both the acquisition and marketing of water.
 - Acquire rights and lease
 - Acquire contracts from storage and "remarket"
 - Create new storage and market
 - Markets "augmentation or mitigation" credits
- 3. Who? (DNRC, a new entity, use Conservancy Districts)

6. Ground & Surface Water: A single resource

Benefits:

- 1. Increased flexibility
- 2. Refection of natural systems
- 3. Reduces future risks
- What are our challenges?
 - May need additional system characterization.
 - Need development of quantifiable basin models.
 - Need enhanced monitoring systems.
 - Outreach and education!
 - Undoubtedly will result in legislation or litigation.

7. Increased Administration

Water Commissioners:

(Basin wide, Sub-basins, Stream reach)

- After Adjudication Water Rights Will Be Decreed
- Who has
 - the right to use,
 - how much water, over what period,
 - where, and for what purpose will be documented.
 - All water rights will be administrable.

8. Water Conservation

Efficiencies of use:

- When does return flow end and waste begin?
- Are economic conditions / scarcity the most stimulant?
- Should governments provide incentives?
- Should state develop efficiency standards for water rights?
- Should "waste of water" be defined statutorily?

Today is an Opportunity

We can choose.

Actions will define our future

What do we want?

